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Optimization Algorithms on Inverse Scattering

of a Two-Dimensional Perfectly Conducting
Cylinder in Dielectric Slab Medium
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Abstract—The application of four techniques for the shape
reconstruction of a 2-D metallic cylinder buried in dielectric slab
medium by measured the scattered fields outside is studied in the
paper. The finite-difference time-domain (FDTD) technique is em-
ployed for electromagnetic analyses for both the forward and in-
verse scattering problems, while the shape reconstruction problem
is transformed into optimization one during the course of inverse
scattering. Then, four techniques including asynchronous particle
swarm optimization (APSO), PSO, dynamic differential evolution
(DDE) and self-adaptive DDE (SADDE) are applied to reconstruct
the location and shape of the 2-D metallic cylinder for comparative
purposes. The statistical performances of these algorithms are
compared. The results show that SADDE outperforms PSO, APSO
and DDE in terms of the ability of exploring the optima. However,
these results are considered to be indicative and do not generally
apply to all optimization problems in electromagnetics.

Index Terms—Asynchronous particle swarm optimization
(APSO), cubic spline, dynamic differential evolution (DDE), finite
difference time domain (FDTD), inverse scattering, particle swarm
optimization (PSO), self-adaptive dynamic differential evolution
(SADDE), time domain.

I. INTRODUCTION

THE detection and reconstruction of buried and inacces-
sible scatterers by inverting microwave electromagnetic

measurements is a research field of considerable interests be-
cause of its numerous applications in geophysical prospecting,
through-wall imaging, and nondestructive testing [1]–[5]. The
reconstruction of the location, shape, and/or size of metallic
cylinders in a three-layer material medium may find its appli-
cation for detection of water pipes inside the wall. Paper [6]
emphasizes on the profile reconstruction of the second layer for
the three-layer structure.

Numerical researches about inverse scattering found in the
literature are based on either frequency-domain and/or time-
domain approaches, or most of them belong to the former
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[7]–[9]. However, the time-domain scheme is a potential al-
ternative for the inverse problems. For frequency-domain algo-
rithms, the interaction of the entire medium with the incident
field needs to be considered. In contrast, since the data of
time-domain scattered field contain more information about the
scatterer than those in the scattered data of single frequency,
time-domain approaches can exploit causality to limit the re-
gion of inversion. Time-domain inverse scattering problems
thus draw considerable interests in the area of remote sensing.

It is well known that one of the major difficulties for
the inverse scattering is its ill-posedness in nature. The ill-
posedness can be treated via the idea of regularization [10].
Another concern for inverse scattering is due to the nonlinearity
because it involves the product of two unknowns: the electrical
properties of object and the electric field within the object.

Inverse scattering problems are usually cast into optimization
ones. There are usually two types of optimization schemes to
solve the inverse scattering problems: the deterministic one and
the stochastic one. The former has been developed for decades,
such as the contrast source inversion method [11], conjugate-
gradient method [12], distorted Born iterative method [13],
the level set method [5], [14] and other gradient-type methods
[15], [16]. Based on these deterministic techniques, several
multi-resolution methods have been proposed to increase the
efficiency of the inversion, such as those in [14], [17]–[19] and
the references therein. The stochastic methods usually employ a
group of initial guesses and use certain stochastic procedure to
minimize the cost function (CF), such as the genetic algorithm
(GA) [16], [20], [21] and various evolutionary optimization
ones. The application of population-based optimization tech-
niques increases the capability of finding the global minimum
rather than being trapped in a local minimum as the deter-
ministic optimization techniques are. Evolutionary computation
[22], [23] provides a more robust and efficient approach for
solving inverse scattering problems. Particle swarm optimiza-
tion (PSO) has proven to be a useful method of optimization
for difficult and discontinuous multidimensional engineering
problems [24]–[26] due to its efficiency of exploring the entire
search space. Moreover, PSO had been applied for inverse
scattering problems [27]–[33]. Another method, called dynamic
differential evolution (DDE) is able to provide the global opti-
mization procedure as GA does, but in a new and faster way.
In additions, DDE were utilized to search the global extreme of
the inverse scattering problem to overcome the drawback of the
deterministic methods [31], [33]–[37].
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In [32], it was shown that PSO outperforms real-coded
GA in terms of convergence speed. In recent decades, some
papers have compared different algorithms applied for inverse
scattering problems [30], [31], [33]. However, these methods
are reported with certain drawbacks that are usually related to
the intensive computational effort required to achieve the global
optimum and/or the possibility of premature convergence to
local optima. Hence, it is seemingly natural to use evolutionary
algorithms (EAs), not only to find the solutions of a problem
but also to tune these algorithms to the particular problem.
Technically speaking, it is usually demanded to modify the
value of control parameters for the algorithm during the search
progress. The proof of convergence of EAs with self-adaptation
is difficult because the control parameters are changed ran-
domly and the selection does not affect their evolution directly
[38]. Since DDE is a promising instance of EAs, for which it
is interesting to investigate how self-adaptivity can be applied.
Until now, self-adaptive DE (SADE) applied to the problems of
real-valued antenna and microwave circuit design was reported
[39], but no papers have ever applied SADDE to investigate the
inverse scattering problems.

In this paper, four different evolutionary techniques for in-
verse scattering problems through time-domain approach are
compared. The electromagnetic analysis is accomplished by
using the finite-difference time-domain (FDTD) method, for
which the sub-gridding technique [20], [37], [40] is imple-
mented to closely describe the fine structure of the cylinder.
The inverse problem is formulated into an optimization one,
and then four techniques including asynchronous PSO (APSO,
PSO, DDE, and SADDE are applied to search the parameter
space. Cubic-spline interpolation technique [41] is employed to
reduce the number of parameters needed to closely describe a
cylinder of arbitrary shape as compared to the Fourier series
expansion.

In Section II, the sub-gridding FDTD method for the elec-
tromagnetic analysis of the forward problem is described. In
Section III, the differences of the four EAs are given. In
Sections IV and V, the inverse problem and some numerical
results are presented, respectively. Finally, in Section VI, some
conclusions are drawn.

II. FORWARD PROBLEM

Let us consider a two-dimensional (2-D) three-layer struc-
ture with a buried metallic cylinder in the second layer as
shown in Fig. 1. The metallic cylinder is parallel to z-axis
and is buried between the planar interfaces separating three
homogeneous spaces: region 1 (ε1, μ1), region 2 (ε2, μ2), and
region 3 (ε3, μ3). The metallic cylinder is illuminated by a
line source with Gaussian pulse shape placed at two different
positions sequentially denoted by Tx in the first layer, and
then the scattered E fields are recorded simultaneously at those
points denoted by Rx in the same layer. The shape of cross
section of the object is star-like that can be represented in polar
coordinates with respect to the origin (XO, YO) of the local
coordinate in x-y plane as shown in Fig. 2.

The electromagnetic analysis is accomplished by using the
FDTD method, for which the computational domain is dis-
cretized by using Yee cells [42]. It should be mentioned that the
computational domain is surrounded by pre-optimized perfect

Fig. 1. Geometry for the inverse scattering of a metallic cylinder of arbitrary
shape in slab medium.

Fig. 2. Cylinder of arbitrary shape is described in terms of a closed cubic
spline. The cubic spline consists of the polynomials of degree 3. (XO, YO) is
the center position in the x-y plane. The ρ1, ρ2, . . . , ρN are radius parameters
to describe cylinder.

matching layers [43] to reduce the reflection from the domain
boundary. The direct scattering problem is to calculate the
scattered electric fields while the shape and location of the
scatterer is given. The shape function F (θ) of the scatterer is
described by the trigonometric series in the direct scattering
problem as follows:

F (θ) =

N
2∑

n=0

Bn cos(nθ) +

N
2∑

n=1

Cn sin(nθ) (1)

where Bn and Cn are real coefficients to expand the shape
function.

In order to closely describe the shape of the cylinder for both
the forward and inverse scattering procedure, the sub-gridding
technique is implemented in the FDTD code; the details are
presented in [40].

III. EAS

Evolution algorithm starts with an initial population of po-
tential solutions that is composed by a group of randomly
generated individuals which represents the center position and
the geometrical radii of the cylinder. Each individual is a
D-dimensional vector consisting of D optimization parameters.
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The initial population may be expressed by {Xj : j = 1,
2, . . . , Np}, where Np is the population size. The explicit
expression for Xj is given in next section. The details of the
DDE, SADDE, PSO, and APSO algorithms are given below.

A. DDE

In DDE, after generating the initial population, the candidate
solutions are refined by applying mutation, crossover, and
selection, iteratively. The flowchart of the DDE algorithm is
shown in Fig. 3. In this strategy, a mutant vector for each target
vector V k+1

j at the k + 1 generation is computed by(
V k+1
j

)
i =

(
Xk

j

)
i+ ζ ·

[(
Xk

best

)
i−

(
Xk

j

)
i
]

+ χ ·
[(
Xk

m

)
i−

(
Xk

n

)
i
]
,

j,m, n ∈ [0, Np − 1], m �= n (2)

where i = 1 ∼ D and χ and ζ are the scaling factors associated
with the vector differences (Xk

best −Xk
j ) and (Xk

m −Xk
n),

respectively. The disturbance vector V due to the mutation
mechanism consists of parameter vector Xk

j , the best particle
Xk

best and two randomly selected vectors. As comparison, the
mutant vector V k+1

j is generated according to (3) for typical
DE [44](
V k+1
j

)
i =

(
Xk

j

)
i+ χ ·

[(
Xk

m

)
i−

(
Xk

n

)
i
]
,

j,m, n ∈ [0, Np − 1], m �= n (3)

where i = 1 ∼ D and χ is the scaling factor associated with
the vector difference (Xk

m −Xk
n). Note that ζ is set to zero for

DE; therefore, the main differences between DDE and DE is
that DDE includes the idea of approaching the “Best” during
the course of optimization procedure.

After mutation, the crossover operator is applied to generate
another kind of new vector uj . The crossover operation in DDE
delivers the crossover vector uk+1

j by mixing the components
of the current vector Xi and the above mutant vector Vi. It can
be expressed as

uk+1
j =

{(
V k+1
j

)
i
, Qk < CR(

Xk
j

)
i
, Qk ≥ CR

(4)

where i = 1 ∼ D and Qk is a random number uniformly dis-
tributed within [0,1]. CR ∈ (0, 1) is a predefined crossover
rate. DDE uses a greedy selection operator that is defined by

Xk+1
j =

{
uk+1
j , if CF

(
uk
j

)
< CF

(
Xk

j

)
Xk

j , otherwise.
(5)

Selection operation is conducted by comparing the parent
vector Xk+1

j with the crossover vector uk+1
j . The vector

with smaller CF value is selected as a member for the next
generation.

B. SADDE

Storn has suggested [44] to choose the DE control parameters
χ and CR from the intervals [0.5,1] and [0.8,1], respectively,
and to set Np = 10D. However, the suitable parameter value

Fig. 3. Flowchart for the dynamic differential evolution. Pessimistic sub-area
stands for dynamic update.

is, frequently, problem dependent. The control parameters that
work fine for one problem may fail to lead to convergence for
other problems. The effort of trial-and-error to fine tune the
control parameter is unavoidable usually. In some cases, the
effort and time for this trial-and-error is unacceptable. In [38],
[39] a novel strategy is proposed for the self-adapting of control
parameters for DE. The basic idea is to have the control param-
eters evolve through generations. New vectors are generated
by using the evolved values of the control parameters. These
new vectors are more likely to survive and produce offspring
during the selection procedure. In turn, the survived vectors
carry the improved values of the control parameters to the next
generation. Therefore, the control parameters are self-adjusted
in every generation for each individual according to the follow-
ing scheme:

ζi,k+1 =

{
ζl + rand1 ∗ ζu, if rand2 < 0.1
ζi,k , otherwise

(6)

χi,k+1 =

{
χl + rand3 ∗ χu, if rand4 < 0.1
χi,k , otherwise

(7)

CRi,k+1 =

{
rand5, if rand6 < 0.1
CRi,k , otherwise

(8)

where rand1, rand2, rand3, rand4, rand5, and rand6 are
random numbers with the values uniformly distributed between
0 and 1. ζl, ζu, χl, and χu are the lower and the upper limits
of ζ and χ, respectively. Both ζl and χl are set to 0.1, and
both ζu and χu are set to 0.9 [38], [39]. The performance of
SADE applied to several low-dimensional benchmark functions
is reported. It is concluded that the self-adaptive strategy is
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better (or at least comparable) to the classical DE strategy
regarding the quality of the solutions obtained. The algorithm of
SADDE is a self-adaptive version of DDE, which is processed
of self-adaptibility and the ability of approaching the “Best.”
Based on the self-adaptive concept, the parameters ζ, χ, and
CR adjust automatically while the time complexity does not
increase.

C. PSO

In PSO, the particles move in the search space, where each
particle position is updated by two optimum positions. The first
one is the position (with best fitness) that has been achieved
so far for the concerned particle. This position is called xpbest.
The other one is the global best position obtained so far by any
particle in the swarm. This best position is called xgbest [45].

By keeing xpbest and xgbest, the update rule for the velocity
of each particle is an important mechanism in a PSO algorithm.
The most commonly used update rule for the velocity vk+1

j is
as follows:

vk+1
j =ω · vkj + c1 · φ1 ·

(
xk
pbestj

− xk
j

)
+ c2 · φ2 ·

(
xk
gbest − xk

j

)
(9)

xk+1
j =xk

j + vk+1
j , j = 0 ∼ Np − 1 (10)

where c1 and c2 are the learning coefficients used to control the
impact of the local and global components in velocity (9). vk+1

j

and xk+1
j are the velocity and position of the jth particle at

generation k + 1. Both φ1 and φ2 are random numbers with the
values uniformly distributed between 0 and 1. ω is a parameter
known as the inertia weight.

D. APSO

Clerc [46] suggested the use of a different velocity update
rule, which introduced a parameter ξ called constriction fac-
tor. The role of the constriction factor is to ensure conver-
gence when all the particles tend to stop their movement. The
flowchart of the APSO algorithm is shown in Fig. 4.

The velocity update rule is then given by

vk+1
j = ξ ·

(
vkj + c1 · φ1 ·

(
xk
pbestj

− xk
j

)
+ c2 · φ2 ·

(
xk
gbest − xk

j

) )
(11)

xk+1
j =xk

j + vk+1
j , j = 0 ∼ Np − 1 (12)

where ξ = 2/|2− φ−
√
φ2 − 4φ|, φ = c1 + c2 ≥ 4.

By (9) and (11), particles fly around in the multidimensional
solution space and adjust their positions according to their
own experience and the experience of neighboring particles,
by exploiting the knowledge of best positions encountered by
themselves and their neighbors [32].

The key distinction between a PSO and the APSO is on the
updating mechanism, damping boundary condition, and mu-
tation scheme. In the typical synchronous PSO, the algorithm
updates all the particles velocities and positions using (9) and
(11) at the end of each generation and then updates the best
positions, xpbest and xgbest. Alternatively, the current updating
mechanism of APSO uses the following rule: just after the

Fig. 4. Flowchart for the APSO.

update by (9) and (11) for each particle the best positions xpbest

and xgbest will be replaced if the new position is better than the
current best ones such that they can be used immediately for
the next particle. In this way, the swarm reacts more quickly to
speedup the convergence.

Boundary conditions in PSO play a key role as it is pointed
out in [47]. In this paper, we have applied the damping
boundary condition and mutation scheme. The mutation
scheme plays a role in avoiding premature convergences for the
searching procedure and helps the xgbest escape from the local
optimal position. More details about the APSO algorithm can
be found in [29], [30].

IV. INVERSE PROBLEM

A. Cubic-Spline Representation for the Cross-Section Shape
of Scatterer

There are two main advantages for cubic-spline expansion as
following: 1) for complicated shape, the number of unknowns
for expanding the shape function by cubic-spline expansion is
less than that by Fourier series expansion, 2) the exact center
of the object is insensitive for cubic-spline expansion unlike
for Fourier series expansion. If there is some displacement for
the exact center of the object, the number of unknowns for
expanding the shape function by Fourier series expansion will
increase largely. On the other hand, the number of unknowns
does not vary for cubic-spline expansion [48].
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It should be noted that for the inverse problem, the shape
function of the 2-D metallic cylinder is described by a cubic
spline in this study instead of the trigonometric series described
in the section of the forward problem. The cubic spline is more
efficient in terms of the unknown number required to describe
a cylinder of arbitrary cross section. By using the cubic spline,
the coordinates of local origin inside the cylinder serve as the
searching parameter and can move around the searching space,
which is difficult (if not impossible) if the trigonometric series
expansion is used in the inversion procedure.

As shown in Fig. 2, the cubic spline consists of connected
curve segments described by the polynomials of degree 3 Pi(θ),
i = 1, 2, . . . , N . The connected segments satisfy the following
continuous conditions:

Pi(θi) =Pi+1(θi) ≡ ρi
P ′
i(θi) =P ′

i+1(θi) i = 1, 2, . . . , N

P ′′
i (θi) =P ′′

i+1(θi) (13)
P1(θ0) =PN (θN )

P ′
1(θ0) =P ′

N (θN ) ≡ ρ′N
P ′′
1 (θ0) =P ′′

N (θN ). (14)

Through the interpolation of the cubic spline, an arbitrary
smooth cylinder can be easily described through the radius
parameters ρ1, ρ2, . . . , ρN and the slope ρ′N . As long as
ρ1, ρ2, . . . , ρN and ρ′N are given, the continuous conditions
can yield a system of algebraic equations to determine all the
polynomials of degree 3, of which the details are referred to
[41]. By combining the four optimization algorithms and the
cubic-spline interpolation technique, we are able to reconstruct
the microwave image efficiently.

B. Inverse Problem

For the inverse scattering problem, the shape and location
of the perfectly conducting cylinder are reconstructed by the
given scattered electric field recorded at the receivers. The
inverse problem is resolved by an optimization approach, and
four techniques including DDE, SADDE, PSO, and APSO are
applied to minimize the following CF (CF ):

CF =

Ni∑
n=1

M∑
m=1

B∑
b=0

∣∣Eexp
z (n,m, bΔt)− Ecal

z (n,m, bΔt)
∣∣

Ni∑
n=1

M∑
m=1

B∑
b=0

|Eexp
z (n,m, bΔt)|

(15)

where Eexp
z and Ecal

z are the recorded electric field data and
the calculated electric fields, respectively. Ni and M are the
total number of the transmitters and receivers, respectively. B
is the total number of time step to record the electric fields.

It should be noted that the coordinates of local origin in-
side the cylinder plus the radii of the geometrical spline used
to describe the shape of the cylinder will be determined by
DDE, SADDE, PSO, and APSO schemes. In other words, the
D-dimensional vector Xj that forms the parameter space can
expressed more explicitly as: Xj = {Xj,i; i = 1, 2, . . . , D},
where Xj,1 = XO, Xj,2 = YO, Xj,i = ρi, i = 3, . . . . . . , D −
1, Xj,D = ρ′N . The termination criterion is set to 1000 genera-
tions in our simulation.

Fig. 5. Exact, reconstructed by SADDE with different population size, and
best initial solution. The shape function of this object is given by F (θ) =
29.75 + 11.9 cos(2θ) mm.

Fig. 6. Cost function (CF ) versus numbers of function calls for example 1
by SADDE. The shape function of this object is given by F (θ) = 29.75 +
11.9 cos(2θ) mm.

V. NUMERICAL RESULTS

In this paper, we compare SADDE with PSO, APSO, and
DDE algorithms. The control parameters for the last three
algorithms are those that commonly adopted by other research
works, and good performances are reported. We apply these
algorithms to microwave imaging to investigate the effects of
single and multiple objects, synthetic object and non-synthetic
object, and also the locations of the transmitters.

For Fig. 1, the problem space is divided in 68 × 68 grids
with the grid size Δx = Δy = 5.95 mm. The metallic cylinder
is buried in lossless slab medium (σ1 = σ2 = σ3 = 0). The
transmitters and receivers are placed in free space above the
homogeneous dielectric slab. The permittivities in region 1,
region 2, and region 3 are characterized by ε1 = ε0, ε2 = 8ε0,
and ε3 = ε0, respectively, while the permeability μ0 is assumed
for each region, i.e. only non-magnetic media are concerned
here.
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Fig. 7. Exact, reconstructed by DDE with different population size, and best
initial solution. The shape function of this object is given by F (θ) = 29.75 +
11.9 cos(2θ) mm.

Fig. 8. Cost function (CF ) versus numbers of function calls for example 1
by DDE. The shape function of this object is given by F (θ) = 29.75 +
11.9 cos(2θ) mm.

The cylindrical object is illuminated by a transmitter at two
different positions, Ni = 2, which are located at the (−143 mm,
178.5 mm) and (143 mm, 178.5 mm), respectively. The scat-
tered E fields for each illumination are collected at five re-
ceivers, M = 5, which are equally separated by 47.8 mm along
the line at a distance of 48 mm from the interface between
region 1 and region 2. The excitation waveform Iz(t) of the
transmitter is the Gaussian pulse, given by

Iz(t) =

{
Ae−α(t−βΔt)2 , t ≤ Tw

0, t > Tw
(16)

where A = 1000, β = 24, Δt = 13.337 ps, α = (1/4βΔt)2,
and Tw = 2βΔt. The time duration is set to 250 Δt. Note that
in order to accurately describe the shape of the cylinder, the sub-
gridding FDTD technique is used both in the forward scattering
(1 : 9) and the inverse scattering (1 : 5) parts—but with different
scaling ratios as indicated in the parentheses.

Fig. 9. Exact, reconstructed by APSO with different population size, and best
initial solution. The shape function of this object is given by F (θ) = 29.75 +
11.9 cos(2θ) mm.

Fig. 10. Cost function (CF ) versus numbers of function calls for example 1
by APSO. The shape function of this object is given by F (θ) = 29.75 +
11.9 cos(2θ) mm.

The following examples are investigated for the inverse scat-
tering of the proposed structure by using SADDE, DDE, APSO,
and PSO, respectively. There are 11 unknown parameters to
retrieve, which include the center position (XO, YO), the radius
ρi, i = 1, 2, . . . , 8, of the shape function and the slope ρ′N .
Very wide searching ranges are used for these four optimization
techniques to optimize the CF given by (15). The parameters
and the corresponding searching ranges are listed follows:
−47.6 mm ≤ XO ≤ 47.6 mm, −47.6 mm ≤ YO ≤ 47.6 mm,
5.95 mm ≤ ρi ≤ 71.4 mm, i = 1, 2, . . . , 8, −2 ≤ ρ′N ≤ 2. The
crossover rate CR is set to be 0.8. Both parameters ζ and χ are
set to be 0.8 in DDE. In our simulation, DDE and SADDE use
the same stopping criteria. The related coefficients of the APSO
are set below. The learning coefficients c1 and c2 are set to 2.8
and 1.3, respectively, [49]. The mutation probability is 0.4.
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Fig. 11. Exact, reconstructed by PSO with different population size, and best
initial solution. The shape function of this object is given by F (θ) = 29.75 +
11.9 cos(2θ) mm.

Fig. 12. Cost function (CF ) versus numbers of function calls for example 1
by PSO. The shape function of this object is given by F (θ) = 29.75 +
11.9 cos(2θ) mm.

Here, relative error for the shape reconstruction is defined as

Relative Error =

{
1

N ′

N ′∑
i=1

[
F cal(θi)− F (θi)

]2
/F 2(θi)

}1/2

(17)

where the N ′ is set to 720.
Reconstruction is carried out on an Intel PC (2.83 GHz/

2G memory/500 G). The software is developed on FORTRAN
VISION 6.0 in WINDOWS XP system environment.

A. Variation of the Population Size

At first, two reconstruction cases are tested. For the first
example, the metallic cylinder with shape function F (θ) =
29.75 + 11.9 cos(2θ) mm is considered. Four different popula-
tion sizes, i.e., Pop = 10, 30, 60, and 110 have been examined
for SADDE, DDE, APSO, and PSO, while the total number of

Fig. 13. Reconstructed cross section of the cylinder of example 1 by DDE,
APSO, SADDE, and PSO. The shape function of this object is given by F (θ) =
29.75 + 11.9 cos(2θ) mm.

Fig. 14. Shape function error versus generation for example 1 by SADDE,
DDE, APSO, and PSO, respectively. The shape function of this object is given
by F (θ) = 29.75 + 11.9 cos(2θ) mm.

iterations is set equal to 1000. Furthermore, 20 runs for each
population size are executed for SADDE, DDE, APSO, and
PSO, respectively. It is mentioned that the initial population is
identical for the same run by SADDE, DDE, APSO, and PSO,
respectively.

Fig. 5 shows the exact metallic cylinder, and the recon-
structed results derived by SADDE after 1000 iterations for
Pop. = 10, 30, 60, and 110, respectively. The convergence rate
of the average CF after 20 runs for this example is given in
Fig. 6. Moreover, the numerical results about the reconstruction
and convergence rate of the average CF (after 20 runs) by the
other three algorithms DDE, APSO, and PSO are shown in
Figs. 7–12, respectively. It is obvious that when the population
size is increased the reconstruction quality is improved for
all algorithms. The final reconstructed shapes delivered by
the four algorithms at the 1000th generation are plotted in
Fig. 13 as compared to the exact one. The relative error of
the reconstructed shape F cal(θ) with respect to the exact one
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Fig. 15. Exact, reconstructed by SADDE with different population size, and
best initial solution. The shape function of this object is given by F (θ) =
29.75 + 5.95 cos(4θ) + 17.85 sin(θ) mm.

Fig. 16. Cost function (CF ) versus numbers of function calls for example 2
by SADDE. The shape function of this object is given by F (θ) = 29.75 +
5.95 cos(4θ) + 17.85 sin(θ) mm.

versus generation is shown in Fig. 14. The performance of
SADDE is obviously the best for this example.

In the second example, another symmetric but more com-
plex metallic cylinder with shape function F (θ) = 29.75 +
5.95 cos(4θ) + 17.85 sin(θ) mm is considered. Other param-
eters are kept identical to example 1. The numerical results
about the reconstruction and convergence rate of the average CF
(after 20 runs) by SADDE, DDE, APSO, and PSO, respectively,
are shown in Figs. 15–22. Similarly, these figures show that
when the population size is increased the reconstruction quality
is improved for all algorithms; in addition, pop = 110 is a
reasonable choice for the following examples for comparison
purpose.

The final reconstructed shapes derived by the four algorithms
at the 1000th generation compared to the exact one are plotted
in Fig. 23. The relative error of the reconstructed shape F cal(θ)
with respect to the exact one versus generation is shown in

Fig. 17. Exact, reconstructed by DDE with different population size, and best
initial solution. The shape function of this object is given by F (θ) = 29.75 +
5.95 cos(4θ) + 17.85 sin(θ) mm.

Fig. 18. Cost function (CF ) versus numbers of function calls for example 2
by DDE. The shape function of this object is given by F (θ) = 29.75 +
5.95 cos(4θ) + 17.85 sin(θ) mm.

Fig. 24. It is shown that in the average sense SADDE is better
than PSO, APSO, and DDE in term of searching the global best
optima. Moreover, the statistical performances (of 20 runs) of
these algorithms applied for examples 1 and 2 with pop = 110
are listed in Tables I–IV, respectively. In short, no matter for
the CF or the shape function it shows that SADDE outperforms
DDE, PSO, and APSO regarding the average sense and the
standard deviation.

B. Nonsymmetric of Single-Scatterer Configurations

For the third example, we test a nonsymmetric metallic
cylinder with shape function F (θ) = 29.75 + 5.95 cos(3θ)−
5.95 sin(θ) mm, while the other parameters are kept the same
as the first example except. The reconstructed image by PSO,
APSO, DDE, and SADDE of example 3 for pop = 110 is
shown in Fig. 25. It is found that the image obtained by
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Fig. 19. Exact, reconstructed by APSO with different population size, and
best initial solution. The shape function of this object is given by F (θ) =
29.75 + 5.95 cos(4θ) + 17.85 sin(θ) mm.

Fig. 20. Cost function (CF ) versus numbers of function calls for example 2
by APSO. The shape function of this object is given by F (θ) = 29.75 +
5.95 cos(4θ) + 17.85 sin(θ) mm.

PSO relatively poor as compared with others. Note that the
reconstructed shape is the average results (of 20 runs) at the
1000th generation. The CF (CF ) versus the number of function
calls and the relative error value versus generation are shown
in Figs. 26 and 27, respectively. PSO performs relatively poor
for this example, while SADDE again outperforms the others
in term of the ability of searching the global best optima.
Moreover, the statistical performances (of 20 runs) of these
algorithms applied for example 3 are listed in Tables V and VI.
Again, no matter for the CF or the shape function, it shows
that SADDE outperforms DDE, PSO, and APSO regarding the
average sense and the standard deviation.

C. Multiple-Scatterers Configurations

In the final example, let us consider the inverse problem with
two metallic cylinders. The first metallic cylinder is located at

Fig. 21. Exact, reconstructed by PSO with different population size, and best
initial solution. The shape function of this object is given by F (θ) = 29.75 +
5.95 cos(4θ) + 17.85 sin(θ) mm.

Fig. 22. Cost function (CF ) versus numbers of function calls for example 2
by PSO. The shape function of this object is given by F (θ) = 29.75 +
5.95 cos(4θ) + 17.85 sin(θ) mm.

(−61 mm, 57 mm) of which the shape function is F1(θ1) =
29.75 mm. The shape function of the second metallic cylinder is
F2(θ2) = 29.75 + 5.95 cos(3θ2) + 5.95 sin(θ2) mm, of which
the position is (41 mm, 51 mm). Note that the unknown number
is 22 and Pop = 220 is set in this case, while other parameters
are kept identical to example 1. The reconstructed images at
different generations, the CF (CF ) versus the number of func-
tion calls and relative error value versus generation are shown
in Figs. 28–30, respectively. It is found that the final images
obtained by these four algorithms are all poor as compared
with the exact one. However, it is noted that the locations of
the two conductors are correctly identified which is an inherent
advantage via the time-domain technique.

Moreover, the statistical performances (of 20 runs) of these
algorithms applied for example 4 are listed in Tables VII and
VIII. The relative error values by these four algorithms are
relatively high (> 0.3) and unacceptable as compared to the
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Fig. 23. Reconstructed cross section of the cylinder of example 2 by DDE,
APSO, SADDE, and PSO. The shape function of this object is given by F (θ) =
29.75 + 5.95 cos(4θ) + 17.85 sin(θ) mm.

Fig. 24. Shape function error versus generation for example 2 by SADDE,
DDE, APSO, and PSO, respectively. The shape function of this object is given
by F (θ) = 29.75 + 5.95 cos(4θ) + 17.85 sin(θ) mm.

previous examples. In addition, the standard deviations increase
quite a lot for all these four algorithms (> 0.1), which implies
that they are unable to effectively and/or efficiently resolve such
an inverse problem with two adjacent conductors buried in a
layer dielectric medium. Even so, SADDE still outperforms
DDE, PSO, and APSO regarding the average sense and the
standard deviation. In addition, the best relative error value
for shape function achieved by the SADDE is 0.12, which
is nearly acceptable. By careful examination of the statistical
performances of Tables I–VIII, it should be mentioned the
standard deviation for SADDE is small (∼0.01 or less) when
it performs well to yield the global the optimum. On the
contrary, a large value of standard deviation (∼0.1 or more)
for SADDE corresponds to a large relative error for the shape
reconstruction. This may lead to a practical rule for shape
reconstruction confirmation.

Table IX shows the computational time for the above ex-
amples discussed. The extra computational burden is small if

TABLE I
COMPARATIVE RESULTS FOR EXAMPLE 1 (RELATIVE ERROR VALUE)

TABLE II
COMPARATIVE RESULTS FOR EXAMPLE 1 (COST FUNCTION VALUE)

TABLE III
COMPARATIVE RESULTS FOR EXAMPLE 2 (RELATIVE ERROR VALUE)

TABLE IV
COMPARATIVE RESULTS FOR EXAMPLE 2 (COST FUNCTION VALUE)

Fig. 25. Reconstructed cross section of the cylinder of example 3 by APSO,
PSO, SADDE, and DDE. The shape function of this object is given by F (θ) =
29.75 + 5.95 cos(3θ)− 5.95 sin(θ) mm.

SADDE is employed to achieve better accuracy for the 2-D
inverse scattering problems. In fact, the computational burden
is roughly the same for SADDE, DDE, and APSO. For the
shape reconstruction examples studied, the computation time is
dominated by the FDTD procedure for the scattering problems.

D. Noise Analysis

In order to investigate the sensitivity of the imaging algo-
rithm against random noise, the additive white Gaussian noise
of zero mean with standard deviation σg is added into the
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Fig. 26. Value of cost function versus the number of function calls for
example 3. The shape function of this object is given by F (θ) = 29.75 +
5.95 cos(3θ)− 5.95 sin(θ) mm.

Fig. 27. Shape function error versus generation for example 3 by SADDE,
DDE, APSO, and PSO, respectively. The shape function of this object is given
by F (θ) = 29.75 + 5.95 cos(3θ)− 5.95 sin(θ) mm.

TABLE V
COMPARATIVE RESULTS FOR EXAMPLE 3 (RELATIVE ERROR VALUE)

recorded scattered electric fields to mimic the measurement
errors for examples 1 to 3 (example 4 is not included due to its
poor quality of shape reconstruction). The signal-to-noise ratio
(SNR) is defined as

SNR = 10 log10

Ni∑
n=1

Mi∑
m=1

B∑
b=0

|Eexp
z (n,m, bΔt)|2

σ2
g(Ni)(Mi)(B)

. (18)

Figs. 31–34 show the reconstructed results for the cylinder
under the condition that the recorded scattered fields are con-

TABLE VI
COMPARATIVE RESULTS FOR EXAMPLE 3 (COST FUNCTION VALUE)

Fig. 28. Reconstructed cross section of the cylinder of example 4 by
APSO, PSO, SADDE, and DDE. The shape function of these objects
are given by F1(θ1) = 29.75 mm and F2(θ2) = 29.75 + 5.95 cos(3θ2) +
5.95 sin(θ2) mm.

Fig. 29. Value of cost function versus the number of function calls for exam-
ple 4. The shape function of these objects are given by F1(θ1) = 29.75 mm
and F2(θ2) = 29.75 + 5.95 cos(3θ2) + 5.95 sin(θ2) mm.

taminated by noise, of which the SNR includes 40 dB, 30 dB,
20 dB, 10 dB, and 3 dB. It is observed that good reconstruction
can be obtained for the shape of the metallic cylinder when the
SNR is above 10 dB. Moreover, from Figs. 31–34, we conclude
that even in case of noisy measurements, SADDE outperforms
DDE, PSO, and APSO, in general, and results in more accurate
reconstruction.
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Fig. 30. Shape function error versus generation for example 4 by SADDE,
DDE, APSO, and PSO, respectively. The shape function of these objects
are given by F1(θ1) = 29.75 mm and F2(θ2) = 29.75 + 5.95 cos(3θ2) +
5.95 sin(θ2) mm.

TABLE VII
COMPARATIVE RESULTS FOR EXAMPLE 4 (RELATIVE ERROR VALUE)

TABLE VIII
COMPARATIVE RESULTS FOR EXAMPLE 4 (COST FUNCTION VALUE)

TABLE IX
COMPUTATION TIME FOR ALL EXAMPLES (S)

VI. CONCLUSION

In this paper, four population-based optimization algorithms
including APSO, PSO, DDE, and SADDE are applied to recon-
struct the location and shape of the 2-D metallic cylinder buried
in dielectric slab medium. In order to describe the shape of the
scatterer more effectively, cubic-spline interpolation technique
is utilized.

The statistical performances of these algorithms are reported
and shown in Tables I–VIII. For the cases of single conductor,
the simulated results show that SADDE outperforms PSO,
APSO, and DDE in terms of the ability of exploring the
optima. In addition, for either the CF or the shape function
concerned, it is concluded that SADDE outperforms DDE,
PSO, and APSO regarding the average sense and the standard
deviation. However, these results are considered to be indicative

Fig. 31. Shape error as function of SNR(dB) by SADDE.

Fig. 32. Shape error as function of SNR(dB) by DDE.

Fig. 33. Shape error as function of SNR(dB) by APSO.
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Fig. 34. Shape error as function of SNR(dB) by PSO.

and do not generally apply to all optimization problems in
electromagnetics.

The performance of PSO is the worse among the four al-
gorithms compared. In example 3, it is found that the image
obtained by PSO is relatively poor as compared with others.
The performances of DDE and APSO are comparable, although
DDE is a little bit better in general. The possible reasons are due
to the implementation of approaching the “Best” and dynamic
updating for both algorithms. The outstanding performance of
SADDE is due to its ability of self-adaptivity.

In addition, the standard deviations increase quite a lot for
all these four algorithms (> 0.1), which implies that they are
unable to effectively and/or efficiently resolve such

For the inverse problem with two adjacent conductors buried
in a layer dielectric medium, all the four algorithms investigated
are unable to effectively and/or efficiently resolve, for which
the standard deviations increase quite a lot. However, the best
result for shape function achieved by the SADDE is still nearly
acceptable, which exhibits the robustness of SADDE.

By careful examination of the statistical performances, it is
found that for SADDE the standard deviation (after 20 runs)
may be inversely related to relative error for the shape
reconstruction. This may lead to a practical rule for shape
reconstruction confirmation. The numerical results show that,
even in the presence of noisy field measurements, good recon-
struction for the shape of the metallic cylinder can be obtained
by SADDE when the SNR is above 10 dB. The application of
the robust SADDE to other design problems would be made in
the future.
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